Periodic trends in indirect nuclear spin-spin coupling tensors: relativistic density functional calculations for interhalogen diatomics.

نویسندگان

  • David L Bryce
  • Roderick E Wasylishen
  • Jochen Autschbach
  • Tom Ziegler
چکیده

There have been significant advances in the calculation and interpretation of indirect nuclear spin-spin coupling (J) tensors during the past few years; however, much work remains to be done, especially for molecules containing heavy atoms where relativistic effects may play an important role. Many J tensors cannot be explained based solely on a nonrelativistic Fermi-contact mechanism. In the present work, the relativistic zeroth-order regular approximation density-functional (ZORA-DFT) implementation for the calculation of J has been applied to the complete series of homonuclear and heteronuclear diatomic halogen molecules: F(2), Cl(2), Br(2), I(2), At(2), ClF, BrF, IF, ClBr, ClI, and BrI. For all of these compounds, the reduced isotropic coupling constant (K(iso)) is positive and the reduced anisotropic coupling constant (DeltaK) is negative. With the exception of molecular fluorine, the magnitudes of K(iso) and DeltaK are shown to increase linearly with the product of the atomic numbers of the coupled nuclei. ZORA-DFT calculations of J for F(2) and ClF are in excellent agreement with the results obtained from multiconfigurational self-consistent-field calculations. The relative importance of the various coupling mechanisms is approximately constant for all of the compounds, with the paramagnetic spin-orbit term being the dominant contributor to K(iso), at approximately 70-80%. Available experimental stimulated resonant Raman spectroscopy data are exploited to extract the complete J((127)I,(127)I) tensor for iodine in two rotational states. The dependence of K(iso) and DeltaK on bond length and rovibrational state is investigated by using calculated results in combination with available experimental data. In addition to providing new insights into periodic trends for J coupling tensors, this work further demonstrates the utility of the ZORA-DFT method and emphasizes the necessity of spin-orbit relativistic corrections for J calculations involving heavy nuclei.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relativistic hybrid density functional calculations of indirect nuclear spin–spin coupling tensors — Comparison with experiment for diatomic alkali metal halides1,2

The accurate calculation of the isotropic (Jiso) and anisotropic (DJ) parts of indirect nuclear spin–spin coupling tensors is a stringent test for quantum chemistry, particularly for couplings involving heavy isotopes where relativistic effects and relativity – electron correlation cross terms are expected to play an important role. Experimental measurements on diatomic molecules in the gas pha...

متن کامل

Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a ...

متن کامل

Spin–spin coupling tensors by density-functional linear response theory

Density-functional theory ~DFT! calculations of indirect nuclear magnetic resonance spin–spin coupling tensors J, with the anisotropic but symmetric parts being the particular concern, are carried out for a series of molecules with the linear response ~LR! method. For the first time, the anisotropic components of J are reported for a hybrid functional. Spin–spin tensors calculated using the loc...

متن کامل

بررسی خواص مغناطیسی تک اتم‌های فلزات واسط 3d افزوده شده بر روی بورن نیتراید شش گوشی دوبعدی

In the frame work of relativistic density functional theory, using full potential local orbital band structure scheme (FPLO), the magnetic properties of single 3d transition metals (3d-TM) adsorbed on 2D hexagonal boron nitride (2D h-BN) are investigated. Binding energies between 3d-TM adatoms and 2D h-BN in three different compositions, local spin magnetic moments of 3d-TM and total spin magne...

متن کامل

The performance of hybrid density functional theory for the calculation of indirect nuclear spin-spin coupling constants in substituted hydrocarbons.

Density functional theory, in particular, with the Becke-3-parameter-Lee-Yang-Parr (B3LYP) hybrid functional, has been shown to be a promising method for the calculation of indirect nuclear spin-spin coupling constants. However, no systematic investigation has so far been undertaken to evaluate the capability of B3LYP to calculate these coupling constants accurately, taking properly into accoun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 124 17  شماره 

صفحات  -

تاریخ انتشار 2002